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1. Introduction

An essential part in designing and planning logistics systems is
the identification of the main cost drivers in a certain planning task
to perform an optimization with a special focus on these cost driv-
ers. From a client point of view one is (for example) interested in
identifying the most expensive customers (with respect to delivery
costs). This situation occurs in problems where customers travel to
receive a service and the main goal is to minimize the transporta-
tion cost from the customers to the servicing facilities which are
supported by the customers. Focusing instead on the suppliers
one may want to put an emphasis on the most costly suppliers.
This case happens, for instance, when establishing franchises of a
parcel company to cover door-to-door deliveries in a given region.
In this situation each franchise supports the distribution cost and
the company pays to the franchises a fixed amount of money per
parcel delivered in the region. The goal of the company is to pay
as less as possible to their franchises but still ensure enough ben-
efit to the franchises (otherwise, no subcontractor would buy the
right for the franchise). Therefore, the company has to find places
for these franchises that produce the minimum distribution cost.
A 3PL (3rd party logistics provider) however would set the focus
on the costs of the individual transportation links without adding
up costs on the customer or supplier side. This is the case of haz-
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ardous material (haz-mat) transportation activities. In these situa-
tions the hazardous materials are shipped from the producing
centers to landfills and the overall goal is to shorten as much as
possible each transportation link to minimize environmental expo-
sure to risk. Moreover, classical objective functions, apart from not
representing the different points of view in the logistic problem,
simply sum up all costs and it is impossible to formulate an objec-
tive function which only takes care of the say 10 highest terms in
the overall cost. In this paper we are proposing a first attempt to
close this gap in the context of supply chain design with a focus
on the location side.

Discrete location problems typically involve a finite set of sites
at which facilities can be located, and a finite set of clients, whose
demands for service or goods have to be fulfilled by the facilities.
The most simple and well studied discrete location problems are
the discrete p-median problem and the Uncapacitated (and Capac-
itated) Facility Location Problem, see Aardal (1998) and Neame
et al. (2000). Evidently, many extensions of these basic location
problems have been developed. The extensions range from capac-
ity restrictions, over multi-echelon structures to time dynamic
models. Recently, several articles have been published addressing
strategic supply chain decisions in the context of location
problems, see Hinojosa et al. (2000, 2008), Melo et al. (2009) and
references therein. This development led to a highly flexible
and general framework of location models in terms of side
constraints.

Another important aspect of a location model is the correct
choice of the objective function and in most classical location mod-
els the objective function is the main differentiator. Therefore, a
great variety of objective functions have been considered. The med-
ian objective is to minimize the sum of the costs of fulfilling all de-
mand requests from the clients. The center objective is to minimize
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over all clients the maximum costs of fulfilling the demand of a cli-
ent from the sites chosen. The centdian objective is a convex com-
bination of the median and center objectives; it aims to keep both
the average costs behavior as well as the highest costs in balance.
Despite the fact that all three objectives (and some more) are fre-
quently encountered in the literature (Drezner, 1995; Drezner
and Hamacher, 2002), not much has been done in the direction of
a unified framework for handling all these objectives.

The increasing need for discrete location models in strategic
supply chain planning (see, e.g., Mirchandani and Francis (1990),
Drezner (1995), Kalcsics et al. (2000), Drezner and Hamacher
(2002), Melo et al. (2006, 2009) and references therein) has made
it necessary to develop new and flexible location models. To that
end, Nickel (2001) introduced a new type of objective function
which generalizes the most popular objective functions mentioned
above. This objective function applies a penalty to the costs of ful-
filling the demand of a client which is dependent on the position of
that cost relative to the costs of supplying other customers. For
example, a different penalty might be applied if the costs of sup-
plying the client were the 5th-most expensive costs rather that
the 2nd-most expensive. It is even possible to neglect some cus-
tomers by assigning a zero penalty. This adds a ‘‘sorting”-problem
to the underlying facility location problem, making formulation
and solution much more challenging.

For planar and network location problems, this generalized mod-
el was studied in Puerto and Fernández (1995, 2000), Nickel and
Puerto (1999), Francis et al. (2000) and Rodríguez-Chía et al.
(2000). In Nickel et al. (2005) the multiobjective problem was stud-
ied as well. The research in this area even led to a recent monograph,
see Nickel and Puerto (2005). The model that deals with the discrete
location problem, namely the discrete ordered median problem
(DOMP), has also been analyzed. Starting with a nonlinear formula-
tion, several linearizations have been developed. Structural results
as well as a specially tailored branch and bound procedure are pre-
sented in Boland et al. (2006). By using a different approach, follow-
ing the principal idea of Elloumi et al. (2004), an improved branch
and cut algorithm was developed in Marín et al. (2006, 2008). This
way, it is now possible to optimally solve DOMPs with more than
100 clients in reasonable time. Moreover, a VNS-heuristic and an
evolutionary approach can be found in Domínguez-Marín et al.
(2005) and different genetic algorithms in Stanimirovic et al. (2007).

In the analysis followed in the paper the usage of these objec-
tive functions is instrumental and thus, for the sake of complete-
ness, we start by introducing the basic discrete ordered median
problem (DOMP).

Let A denote a given set of M client sites and identify these with
integers 1; . . . ; M. In the following we assume without loss of gen-
erality that the set of candidate sites for new facilities is identical
to the set of clients A. Let cij P 0 denote the costs of satisfying all
the demand of client i from a facility located at site j. Let N 6 M
be the number of facilities to be located and X # A with jXj ¼ N de-
notes a solution. We assume that each client i will be supplied from
a site j 2 X such that cij ¼ ciðXÞ :¼mink2Xcik.

We define rX to be a permutation on f1; . . . ; Mg for which the
inequalities

crX ð1ÞðXÞ 6 crX ð2ÞðXÞ 6 � � � 6 crX ðMÞðXÞ

hold. Let k ¼ ðk1; . . . ; kMÞ with ki P 0; i ¼ 1; . . . ;M. The discrete or-
dered median problem (DOMP) is defined as

min
X # A ; jXj¼N

XM

i¼1

kicrX ðiÞðXÞ :

For different choices of k we obtain different types of objective
functions. Clearly, classical location problems, like the N-median,
N-center, N-a-centdian, etc., can easily be modeled under this com-
mon pattern. Moreover, new meaningful objective functions are
easily derived. Observe that the DOMP is NP-hard, as it is a gener-
alization of the N-median problem (Kariv and Hakimi, 1979). Apart
from the modeling aspect of the k-weights, they also have neat eco-
nomic interpretations as correction factors for the distance from the
users to the servicing facilities. Another usage is for modeling public
services that are rather cheap for closest users and are also subsi-
dized for remote ones. In this case, ^-shaped (increasing–decreas-
ing) correction factors would be suitable to deal with this kind of
situation, e.g., (0,2,4,6,5,3,1).

In this paper we extend the model of the basic DOMP to cope
with actual requirements from logistics as described above. We
present models taking capacities into account. Moreover, we intro-
duce three different points of view on the problem that depend on
the member of the logistics network that is the driving force of the
planning process: the client, the supplier, and the logistics provider
point of view. To illustrate the different views consider the follow-
ing example.

Example 1.1. Consider a warehouse distribution problem with
four possible locations for new warehouses and six wholesalers
which have to be served. The demand of the wholesalers is given
as: (10,12,11,15,13,14) and the capacities of the possible ware-
house locations are: (39,38,37,38). The wholesaler sites are
indexed f1; . . . ;6g and the warehouses f1; . . . ;4g. Moreover, we
want to build exactly two new warehouses.

Finally, we are given a transportation cost matrix C associated
to the set of wholesalers and possible warehouse locations, where
cij denotes the unit transportation cost between warehouse i and
wholesaler j:

C ¼

12:4 57:9 19:1 21:0 17:5 20:0
11:0 35:9 13:6 23:0 27:5 22:0
15:0 5:9 19:1 17:0 7:5 24:0
11:0 7:9 21:1 27:0 8:5 26:0

0
BBB@

1
CCCA
Note that for the ease of understanding, just for this example, we do
not assume that the set of clients, i.e., wholesalers, coincides with
the set of potential locations for new warehouses.

Classical location problems usually address the client driven
model. Namely, a set of facilities should be located such that the
average or maximal costs for a client to obtain service at or from
a new facility are as small as possible. For example, the average
or maximal shipping costs to be paid by the clients for obtaining
deliveries from a warehouse should be minimized. Therefore, we
denote these models as client cost models.

Example 1.1. (cont.) If we want to minimize the average shipping
costs from the warehouses to the wholesalers over all wholesalers,
it is optimal to locate the two warehouses at the sites 2 and 3 with
average shipping costs of 168.15, see also Fig. 1.

If, however, each wholesaler has to bear the costs to obtain his
products by himself, a more appropriate objective would be to
minimize the maximal shipping costs for each wholesaler when
determining new warehouse locations. In that way we can take
into account aspects of fairness in the decision making process in
the sense that the costs should be balanced over all wholesalers
and nobody has to burden exceptionally high transportation costs
reducing his profit margin unduly. For this situation it is optimal to
locate the two warehouses at the sites 1 and 3 yielding maximal
shipping costs of 280, see also Fig. 2.

Recently, Zhou et al. (2002) introduced a different point of view.
They discuss an application where the product flows within the
supply chain network were required to be as equitable as possible



Fig. 1. Location and allocation pattern for the client point of view minimizing the average shipping costs.

Fig. 2. Location and allocation pattern for the client point of view minimizing maximal shipping costs per wholesaler.
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in the sense that each distribution center is given the same amount
of workload. Their rationale is, that the balanced allocation of cus-
tomers to distribution centers increases the chances of minimizing
stock-outs and late deliveries, while maximizing the order fill rate
and utilization rate of distribution centers. They solve the problem
by minimizing over all distribution centers the maximal total ship-
ping costs of a distribution center. Hence, the focus is on the distri-
bution centers, i.e., the supply facilities, and not on the clients.
Consequently, we denote these models as supplier cost models.

Note, however, that the two models are identical if we are just
looking at the overall costs, i.e., we use a median type objective.
Only when considering other objective functions, like the minimax
objective as in Zhou et al. (2002), we obtain different results, as we
will see later on.

Example 1.1. (cont.) Following the model in Zhou we try to
balance the workload in the warehouses by minimizing the
maximal costs per warehouse. For this situation it is optimal to
locate the two warehouses at the sites 3 and 4 with maximal costs
per warehouse of 561.2, see also Fig. 3.

The last model discusses the case in which a 3rd party logistics
provider is involved as well. In contrast to the previous two mod-
els, the latter does not have an accumulated point of view but looks
instead at each transport relation separately, see also Newman
et al. (2005).

A motivation to consider this point of view is, for example,
founded in the system-inherent Bull-whip effect of Supply Chains.
One possibility to reduce this effect, and consequently the overall
costs, is to reduce the order lead times, see, e.g., Simchi-Levi
et al. (2003). Order lead times, in turn, significantly depend on
transportation times. Therefore, to reduce the Bull-whip effect,
one should try to minimize the maximal shipping time of a deliv-
ery, i.e., of a single transportation relation. We call this model the



Fig. 3. Location and allocation pattern for the supplier point of view.
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logistics provider cost model. Note, that it is identical to the previ-
ous two models if we use a median type objective. Moreover, it
coincides with the client cost model if the problem is
uncapacitated.

Example 1.1. (cont.) Following the above motivation, assume for
the moment that the entries in the cost matrix C denote transpor-
tation times instead of transportation costs. As considering just the
largest transportation time might be too restrictive, we want to
find new locations for the warehouses such that the sum of the 3
largest transportation times are minimal.

For this situation it is optimal to locate the two warehouses at
the sites 1 and 3 with objective value 56.6, see also Fig. 4. The
largest lead time is thereby 20.

The above example shows that each point of view gives rise to
very different solutions that represent the different interests of the
parties in a logistics problem. We are not aware of any similar anal-
ysis focused on supply chain design previously published in the
literature.

There are other applications where different points of view are
already employed, although not explicitly stated as such. For exam-
Fig. 4. Location and allocation pattern for
ple in scheduling problems, finding a schedule that minimizes the
total or maximal due date violation(s) can be interpreted as a client
point of view (we want to meet the customers requirements ‘‘as
good as possible”). In contrast, minimizing the total makespan sets
the focus on the supplier, i.e., producer (his machines should be uti-
lized in the best possible way), see Pinedo (2008). Also in the con-
trol of queues it is well-known that using different queue
disciplines lead to different ways to undertake the problem. For in-
stance applying head of line (HOL) discipline minimizes the server’s
average cost per second which reflects the server point of view,
whereas a first come first served (FCFS) discipline clearly focuses
on the client point of view, see Kleinrock (1976).

In this paper we will develop mathematical programming mod-
els that capture the different characteristics in the above three
points of view of a logistics problem. These three points of view
will be represented within a flexible family of objective functions:
the ordered median functions. We present several formulations and
compare their performance by means of computational experi-
ments on randomly generated test instances.

The rest of the paper is organized as follows: In Section 2 we
provide mathematical formulations for the different points of view.
the logistics provider point of view.
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Section 3 studies alternative formulations for the capacitated dis-
crete ordered median problem under the hypothesis of k-weights
given in non-decreasing order. In Section 4, we present a computa-
tional analysis to determine the limits of solving the problem with
different formulations using standard MIP solvers. The paper ends
with some conclusions.

2. Modeling the different points of view of a logistics problem

As described in the introduction, the goal of this paper is to
develop flexible mathematical programming models that capture
three different points of view that appear in a logistics problem,
and that are capable to incorporate very different objective func-
tions and constraints. In our approach to model the different
points of view of a logistics problem, we borrow some flexible
formulations already available in the literature. The necessity
for a unified way of representing very different objective func-
tions that are associated to the different points of view, leads
us to use the ordered median function (see Nickel and Puerto,
2005).

In the following we address this modeling phase by presenting
formulations of the capacitated discrete ordered median problem
(CDOMP) for the three different points of view. In the first subsec-
tion, which is devoted to the client point of view, we compare three
alternative formulations based on different sets of variables (with
3, 2 and 1 indexes, respectively) and discuss their efficiency. The
second subsection introduces the supplier point of view formula-
tion, whereas the third presents the formulation of the problem
under the logistics provider point of view.

We will denote ak the demand of client k, for all k ¼ 1; . . . ;M
and bj the capacity of a supplier located at site j, for all
j ¼ 1; . . . ;M. Recall that we want to select N out of the M candidates
sites as locations for new facilities.

2.1. Modeling from a client point of view

As mentioned above, we embed our models into the family of
ordered median problems. To this end, we consider the capacitated
discrete ordered median problem from a client point of view
ðCDOMPCV Þ, also denoted client cost model. This model looks for
a given number of supply facilities with enough capacity to cover
the entire demand of the clients. The goal is to minimize the
weighted sum of the costs to cover the overall demand of the cli-
ents (client costs), where the weights are correction factors that
depend on the ordered sequence of client costs. In order to formu-
late this model we use the following set of variables:

sijk ¼ proportion of demand ak; covered by supplier
j when the total transportation costs to cover
the demand of client k are in the ith position of the
client cost vector:

yj ¼
1 if a new supplier is located at site j;
0 otherwise;

�

zik ¼
1 if the overall transportation costs

to cover client k are at position i;

0 otherwise;

8><
>:

for i; j; k ¼ 1; . . . ;M. Among the above variables, the yj are standard
in location models, see Drezner (1995), while the remainders are
specific to the discrete ordered models. The mathematical model,
denoted ðCDOMPCV Þ, is now as follows:

min
XM

i¼1

ki

XM

j¼1

XM

k¼1

sijk ak cjk ð1Þ
s:t:
XM

i¼1

XM

j¼1

sijk ¼ 1 8k ¼ 1; . . . ;M ð2Þ

XM

j¼1

XM

k¼1

sijk ¼ 1 8i ¼ 1; . . . ;M ð3Þ

XM

j¼1

sijk ¼ zik 8i; k ¼ 1; . . . ;M ð4Þ

XM

j¼1

XM

k¼1

sijk ak cjk 6
XM

j¼1

XM

k¼1

siþ1;jk akcjk

8i ¼ 1; . . . ;M � 1 ð5ÞXM

i¼1

XM

k¼1

sijk ak 6 bj yj 8 j ¼ 1; . . . ;M ð6Þ

XM

j¼1

yj ¼ N ð7Þ

yj 2 f0;1g 8j ¼ 1; . . . ;M

sijk P 0 8i; j; k ¼ 1; . . . ;M
zik 2 f0;1g 8i; k ¼ 1; . . . ;M

The objective function (1) is the weighted ordered sum of the total
client costs (the client cost for a client in position i isPM

j¼1

PM
k¼1sijkakcjk). Constraints (2) guarantee that the demand of

all clients is covered. Constraints (3) and (4) ensure that total trans-
portation costs to cover a client may be allocated to only one posi-
tion in the ordered vector of total client costs. Constraints (5)
guarantee the non-decreasing order of the entries of the client cost
vector. Constraints (6) ensure that the total amount supplied by
each server does not exceed its capacity. By constraint (7), N new
supply facilities are built.

Note that the quality of the lower bound provided by the linear
relaxation of the above formulation is usually very bad. Indeed, in
the relaxed problem it is possible for each client to satisfy its de-
mand using self-service by partially opening all facilities, that is,
each client is served by itself whenever it has enough capacity.
Therefore, for the problems with free self-service, the lower bound
obtained by the linear relaxation could be zero. This property ap-
plies to all the remaining models and therefore forces to develop
new types of lower bounds to be used in algorithmic approaches
see Nickel and Puerto (2005).

2.1.1. Alternative formulations for the CDOMPCV

Replacing the term
PM

j¼1sijk akcjk by a single, two-index variable
tik gives rise to a new formulation of the problem. This model uses
the following additional sets of variables:

xjk ¼ proportion of demand ak covered by the supplier j

tik ¼ total transportation costs to cover client k at position i

for i; j; k ¼ 1; . . . ;M. The formulation of the problem, denoted
ðCDOMP2

CV Þ, is then as follows:

min
XM

i¼1

ki

XM

k¼1

tik

s:t:
XM

j¼1

xjk ¼ 1 8k ¼ 1; . . . ;M ð8Þ

XM

i¼1

zik ¼ 1 8k ¼ 1; . . . ;M ð9Þ

XM

k¼1

zik 6 1 8i ¼ 1; . . . ;M ð10Þ

XM

k¼1

tik 6
XM

k¼1

tiþ1;k 8i ¼ 1; . . . ;M � 1 ð11Þ
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XM

k¼1

ak xjk 6 bj yj 8j ¼ 1; . . . ;M ð12Þ

tik P
XM

j¼1

ak cjk xjk �
XM

j¼1

ak cjkð1� zikÞ 8i; k ¼ 1; . . . ;M ð13Þ

XM

j¼1

yj ¼ N

zik 2 f0;1g 8i; j; k ¼ 1; . . . ;M
yj 2 f0;1g 8i; j; k ¼ 1; . . . ;M

0 6 xij 6 1 8i; j ¼ 1; . . . ;M

tik P 0 8i; k ¼ 1; . . . ;M

Constraints (8)–(10) again ensure that the demand of all clients is
met and that the total transportation costs to cover a client may
be allocated to only one position in the ordered vector of total client
costs.

Constraints (11) guarantee the non-decreasing order of the en-
tries of the client cost vector. Constraints (12) ensure that the total
amount supplied by each server does not exceed its capacity. Final-
ly, (13) guarantees that the tik variables are correctly modeled.

Note that we obtain an alternative formulation by replacing
constraints (13) with the following two sets of constraints:

XM

i¼1

tik ¼
XM

j¼1

xjk ak cjk; 8k ¼ 1; . . . ;M;

and

tik 6 zik max
j¼1;...;M

ak cjk; 8i; k ¼ 1; . . . ;M :

Yet another formulation can be obtained by further aggregating the
variables tik. Let

ti ¼ the transportation costs in the ith position; i ¼ 1; . . . ;M:

By doing so, we obtain the following model, denoted ðCDOMP1
CV Þ:

min
XM

i¼1

ki ti

s:t:
XM

j¼1

xjk ¼ 1 8k ¼ 1; . . . ;M

XM

i¼1

zik ¼ 1 8k ¼ 1; . . . ;M

XM

k¼1

zik 6 1 8i ¼ 1; . . . ;M

ti 6 tiþ1 8i ¼ 1; . . . ;M � 1 ð14Þ
XM

k¼1

ak xjk 6 bj yj 8j ¼ 1; . . . ;M

ti P
XM

j¼1

ak cjk xjk �
XM

j¼1

ak cjkð1� zikÞ 8i; k ¼ 1; . . . ;M ð15Þ

XM

j¼1

yj ¼ N

yj 2 f0;1g 8i; j; k ¼ 1; . . . ;M

zik 2 f0;1g 8i; j; k ¼ 1; . . . ;M
0 6 xij 6 1 8i; j ¼ 1; . . . ;M

ti P 0 8i ¼ 1; . . . ;M

Except for Constraints (14) and (15), which have the same meaning
as (11) and (13), all other constraints are identical to the previous
model. Note that, again, an alternative formulation can be obtained
from the previous one by replacing constraints (15) with:
XM

i¼1

ti ¼
XM

k¼1

XM

j¼1

xjk ak cjk;

and

ti 6
XM

k¼1

zik max
j¼1;...;M

ak cjk; 8i ¼ 1; . . . ;M :

In the following, we denote the linear programming relaxation of

CDOMP1
CV

� �
and CDOMP2

CV

� �
by LP � CDOMP1

CV

� �
and

LP � CDOMP2
CV

� �
, respectively. We notice that the feasible region

described by LP � CDOMP1
CV

� �
is a projection of the feasible region

of LP � CDOMP2
CV

� �
. To see this, choose ðx0; y0; z0; t0Þ as a feasible

solution of LP � CDOMP2
CV

� �
. Then ðx0; y0; z0; t00Þ is a feasible solution

of LP � CDOMP1
CV

� �
by setting t00i ¼

PM
k¼1t0ik for all i ¼ 1; . . . ;M.

Therefore, following similar arguments to the ones in Section 14.2

in Nickel and Puerto (2005), CDOMP1
CV

� �
outperforms CDOMP2

CV

� �
in terms of efficiency. Moreover, the following example shows that
the inclusion above is strict.

Example 2.1. Let M ¼ 3 and N ¼ 2, i.e., we have three clients, and
we would like to locate two new supply facilities. Let

C ¼
0 1 1
1 0 3
3 3 0

0
@

1
A be the 3 � 3 cost matrix. Then, consider the point

ðx0; y0; z0; t00Þ defined as follows:

x0 ¼
0 0:25 0:25

0:5 0 0:75
0:5 0:75 0

0
B@

1
CA; y0 ¼

0:5
0:75
0:75

0
B@

1
CA;

z0 ¼
0 0:5 0:5

0:5 0 0:5
0:5 0:5 0

0
B@

1
CA; t00 ¼

0:5
3

3:5

0
B@

1
CA:

This point belongs to the feasible region of LP � CDOMP1
CV

� �
. To ob-

tain a point belonging to the feasible region of LP � CDOMP2
CV

� �
we

would need to find values for t0ik for all i ¼ 1;2;3. However, this is
not possible as on the one hand, by constraints (13), we obtain that

t011 P 0; t012 P 0:5; t013 P 0:5;

and on the other hand,
PM

k¼1t01k ¼ 0:5 ¼ t001. Thus, there is no solution
to the above system of equations and therefore ðx0; y0; z0; t00Þ cannot

be transformed into a solution for LP � CDOMP2
CV

� �
.

As the formulation CDOMP2
CV

� �
is dominated in terms of accu-

racy by CDOMP1
CV

� �
, we will only consider the latter formulation

in the remainder. Next, we compare formulations CDOMPCVð Þ and

CDOMP1
CV

� �
. Although one may think that formulation

CDOMP1
CV

� �
, which has less variables and constraints, should be

more efficient than CDOMPCVð Þ in terms of computational time,
our experiences show that this is not the case. In fact, formulation

ðCDOMPCV Þ outperforms CDOMP1
CV

� �
, as illustrated in Table 1. This

behavior may be expected as a similar conclusion was already ob-
tained for the uncapacitated discrete ordered median problem see
Boland et al. (2006). Therefore, in the following, we only consider
formulations based on the rationale of the one given in ðCDOMPCV Þ.



Table 1
Numerical comparison of the two alternative formulations for the CDOMPCV .

Median Center k-Centrum Trimmed mean ^-Shaped

M N Avg Max Avg Max Avg Max Avg Max Avg Max

ðCDOMPCV Þ 6 2 0.1 0.1 1.1 2.3 0.9 2.8 0.2 0.3 0.3 0.4
7 2 0.2 0.3 11.6 41.5 11.9 29.3 0.9 1.4 0.8 1.0
8 2 0.6 1.0 57.8 168.9 54.1 175.7 4.5 9.1 3.2 7.8
9 3 1.2 2.0 2369.1 5586.7 2321.3 5591.8 10.5 18.6 12.3 18.9
10 3 2.0 2.8 5750.7 7187.4 6041.0 7185.7 203.5 771.1 57.2 116.0

CDOMP1
CV

� �
6 2 0.9 1.1 2.2 4.1 2.3 4.2 0.8 1.3 0.9 1.5
7 2 5.3 8.7 19.9 42.2 20.5 33.5 3.4 4.9 6.2 10.3
8 2 34.2 82.6 213.6 513.8 115.1 260.8 17.6 30.6 31.2 51.5
9 3 509.5 1122.8 5453.5 7146.1 4952.6 7142.1 244.2 297.3 481.3 786.3
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2.2. Modeling from the supplier point of view

In this section, we address the supplier point of view of a
logistics problem. Again, we model it using the capacitated dis-
crete ordered median problem, and thus, we borrow some tools
from the literature devoted to the DOMP. This approach leads
us to the capacitated discrete ordered median problem from a
supplier point of view ðCDOMPSV Þ. Once more, we are looking
for a given number of supply facilities with enough capacity to
cover the entire demand of the clients. In contrast to the previous
model, we now consider the total transportation costs that accu-
mulate at each supply facility (supplier costs). That is, the sup-
plier costs of a facility are the sum of the transportation costs
of shipments from that facility to the clients. The goal is to min-
imize the weighted sum of the supplier costs to deliver goods for
covering the demand of all clients, where the weights are correc-
tion factors that depend on the ordered sequence of supplier
costs. The interpretation of the correction factors is very similar
to the client cost model but now from the point of view of the
suppliers.

Note that now the k vector is in RN . To formulate this model we
use, in addition to the y-variables previously introduced, the fol-
lowing sets of variables:

sijk ¼ proportion of the capacity of supplier j sent to customer
k when the transportation costs of supplier j are the
ith smallest value of the supplier cost vector

zij ¼
1 if the costs of supplier j are in position i;

0 otherwise;

�

for i ¼ 1; . . . ;N and j; k ¼ 1; . . . ;M. Then, the model, denoted
ðCDOMPSV Þ, is defined as

min
XN

i¼1

ki

XM

j¼1

XM

k¼1

sijk bj cjk ð16Þ

s:t:
XN

i¼1

XM

j¼1

sijk bj ¼ ak 8k ¼ 1; . . . ;M ð17Þ

XM

k¼1

sijk 6 zij 8i ¼ 1; . . . ;N; j ¼ 1; . . . ;M ð18Þ

XM

j¼1

zij 6 1 8i ¼ 1; . . . ;N ð19Þ

XN

i¼1

zij 6 yj 8j ¼ 1; . . . ;M ð20Þ

XM

j¼1

XM

k¼1

sijk bj cjk 6
XM

j¼1

XM

k¼1

siþ1;jk bj cjk 8i ¼ 1; . . . ;N � 1 ð21Þ
XM

j¼1

yj ¼ N

sijk P 0 8i ¼ 1; . . . ;N; j; k ¼ 1; . . . ;M

yj 2 f0;1g 8j ¼ 1; . . . ;M

zij 2 f0;1g 8i ¼ 1; . . . ;N; j ¼ 1; . . . ;M
The objective function (16) represents the weighted ordered sum of
total supplier costs (the supplier costs in position i arePM

j¼1

PM
k¼1sijkbjcjk). Constraints (17) guarantee that the demand of

all clients is covered. Constraints (18)–(20) ensure that total trans-
portation costs that accumulate at a supply facility may be allocated
to at most one position in the vector of supplier costs. Constraints
(21) guarantee the non-decreasing order of the entries in the cost
vector.

Comparing the modeling meaning of the formulation CDOMPCV

with CDOMPSV , the main difference appears on the ordering con-
straints (5) (in CDOMPCV ) with respect to (21) (in CDOMPSV ). The
former aggregates cost on clients whereas the latter does on sup-
pliers, each model captures the intrinsic importance of the driving
force in the logistic system.
2.3. Modeling from the logistics provider point of view

In this section, we discuss the logistics provider point of view of
a logistics problem. We model this problem via the capacitated dis-
crete ordered median problem from a logistics provider point of
view ðCDOMPLV Þ. The logistics provider wants to study the overall
costs of a certain solution by looking at all transportation links sep-
arately. The goal is to minimize the weighted sum of the transpor-
tation costs from each supplier to each client. The weights are
correction factors that depend on the ordered sequence of the costs
of the single transportation links. The interpretation of the correc-
tion factors is very similar to the one given for the client cost model
but in this case we consider the transportation costs from each ser-
ver to each client.

To formulate the model we need, in addition to the y-variables,
the following two sets of variables:
sijk ¼proportion of demand ak covered by supplier j

when the transportation costs of that proportion of demand
are the ith lowest value of the transportation
cost vector between suppliers and customers:

dijk ¼
1 if the costs for supplying client k from supplier j are in position i;
0 otherwise;

�

for i ¼ 1; . . . ;NM and j; k ¼ 1; . . . ;M. Now, the formulation of this
model, denoted ðCDOMPLV Þ, is the following:
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min
XNM

i¼1

ki

XM

j¼1

XM

k¼1

sijk ak cjk ð22Þ

s:t:
XNM

i¼1

XM

j¼1

sijk ¼ 1 8k ¼ 1; . . . ;M ð23Þ

sijk 6 dijk i ¼ 1; . . . ;NM; j; k ¼ 1; . . . ;M ð24ÞXM

j¼1

XM

k¼1

dijk 6 1 i ¼ 1; . . . ;NM ð25Þ

XNM

i¼1

dijk 6 1 8j; k ¼ 1; . . . ;M ð26Þ

XM

j¼1

XM

k¼1

sijk ak cjk 6
XM

j¼1

XM

k¼1

siþ1;jk ak cjk 8i ¼ 1; . . . ;NM � 1

ð27ÞXNM

i¼1

XM

k¼1

sijk ak 6 bj yj 8j ¼ 1; . . . ;M ð28Þ

XM

j¼1

yj ¼ N

yj 2 f0;1g 8j ¼ 1; . . . ;M

sijk P 0 8i ¼ 1; . . . ;NM; 8j; k ¼ 1; . . . ;M
dijk 2 f0;1g i ¼ 1; . . . ;NM; j; k ¼ 1; . . . ;M
The objective function (22) represents the weighted ordered sum of
the transportation costs from each supplier to each client (the
transportation costs from a supplier to a client in the ith position
are

PM
j¼1

PM
k¼1sijkakcjk). Constraints (23) guarantee that the demand

of all clients is covered. Constraints (24) and (25), together with
the integrality constraints on the dijk-variables, ensure that we can
assign to a position i the transportation costs of at most one trans-
portation link. In turn, constraints (26) guarantee that the costs of
supplying a client from a supplier can appear in at most one posi-
tion in the cost vector. Constraints (27) ensure the non-decreasing
order of the entries of the cost vector. Constraints (28) guarantee
that the total amount supplied by each server does not exceed its
capacity.

Once again the main difference of this model with respect to the
client and supplier models is on the elements to be ordered.
Whereas on the previous models the driving forces are the clients
or suppliers here one cares on transportation links. Hence, these
are the amounts that are aggregated and compensated via k-
weights.
3. Improved formulations

The formulations presented in the previous section does not
make any hypothesis on the sequence of the k modeling weights.
Thus, although providing great generality, these formulations are
at times not very efficient. One way to improve the efficiency is
by imposing conditions on the feasible k weights. This has been al-
ready done by Ogryczak and Tamir (2003) and Ogryczak and Śli-
wiński (2003) who require non-decreasing monotonicity on the
sequence of k. The reader may notice that even though this is a
restriction, most of the classical models in locational analysis still
fall within this class. We have adapted the formulation by Ogryc-
zak and Tamir (2003) and Ogryczak and Śliwiński (2003) for the or-
dered median problem to our case. Basically, given a set of
variables zi, they give a linear programming formulation to com-
pute the q largest z-values as follows. zðiÞ represents the values zi

sorted in non increasing order.
For any integer q;1 6 q 6 M, consider the following function

defined in ½0;þ1Þ:
fqðtÞ :¼ qt þ
XM

i¼1

maxf0; zi � tg:

This is a convex piecewise linear function with slopes moving from
q�M to q in integer steps, whose minimum is reached either when
the slope is 0 or, if this is not the case, when the slope changes from
negative to positive, i.e., when t equals the qth maximum value of
the vector z, namely zðqÞ. Thus, the minimum value of f is

fqðzðqÞÞ ¼ qzðqÞ þ
XM

i¼1

maxf0; zi � zðqÞg ¼ qzðqÞ þ
Xq

i¼1

ðzðiÞ � zðqÞÞ

¼
Xq

i¼1

zðiÞ;

i.e., the sum of the q maximum values. Therefore, minimizing the
sum of the q-largest z-values can be linearized as

min qtq þ
XM

i¼1

diq s:t: diq P 0 8i; diq P zi � tq 8i: ð29Þ

Depending on the different points of view, non-decreasing monoto-
nicity on the sequence of k means that: (1) 0 6 k1 6 � � � 6 kM for the
CDOMPCV , denoted in the following by CDOMP6CV , (2)
0 6 k1 6 � � � 6 kN for the CDOMPSV , that we denote by CDOMP6SV ,
and (3) 0 6 k1 6 � � � 6 kMN for the CDOMPLV denoted by CDOMP6LV .
The formulations proposed in this section are based on the above
transformation. Following the scheme of the previous sections, we
propose different formulations that depend on the different points
of view considered in the planning process. We will set k0 ¼ 0 to
simplify the notation.

3.1. Client point of view

To state the improved model for the client point of view,
CDOMP6CV , we first define the following variables:

sjk ¼ proportion of the demand of ak satisfied by supplier j

for j; k ¼ 1; . . . ;M. Then, the formulation, denoted CDOMP6CV

� �
, is as

follows:

min
XM

i¼1

ðkM�iþ1 � kM�iÞ i � ti þ
XM

k¼1

dki

 !
ð30Þ

s:t: dki P ak

XM

j¼1

sjk cjk � ti 8i; k ¼ 1; . . . ;M ð31Þ

XM

j¼1

sjk ¼ 1 8k ¼ 1; . . . ;M ð32Þ

XM

k¼1

sjk ak 6 bj yj 8j ¼ 1; . . . ;M

XM

j¼1

yj ¼ N

yj 2 f0;1g 8j ¼ 1; . . . ;M

sjk P 0 8j; k ¼ 1; . . . ;M

dki P 0 8i; k ¼ 1; . . . ;M

ti 2 R 8i ¼ 1; . . . ;M

The objective function (30) and the constraints (31) represent the
ordered weighted sum of the values ak

PM
j¼1sjkcjk for k ¼ 1; . . . ;M,

as shown in (29) (see Ogryczak and Tamir (2003) for details). Con-
straints (32) guarantee that for a fixed k ¼ 1; . . . ;M the variables sjk

represent a proportion when the index j takes the values 1; . . . ;M.
The remaining constraints are the usual ones for capacitated loca-
tion problems.
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3.2. Supplier point of view

To give the improved model for the supplier point of view,
CDOMP6SV , we first define the following variables:

sjk ¼ proportion of the capacity of supplier j sent to customer k

for j; k ¼ 1; . . . ;M. Then, the formulation, denoted CDOMP6SV

� �
, is the

following:

min
XN

i¼1

ðkN�iþ1 � kN�iÞ i � ti þ
XN

j¼1

dji

 !
ð33Þ

s:t: dji P
XM

k¼1

sjk bj cjk � ti 8i ¼ 1; . . . ;N; j ¼ 1; . . . ;M ð34Þ

XN

j¼1

sjk bj ¼ ak 8k ¼ 1; . . . ;M;

XN

k¼1

sjk 6 yj 8j ¼ 1; . . . ;M

XM

j¼1

yj ¼ N

yj 2 f0;1g 8j ¼ 1; . . . ;M

sjk P 0 8j ¼ 1; . . . ;M; k ¼ 1; . . . ;M

dki P 0 8i ¼ 1; . . . ;N; k ¼ 1; . . . ;M

ti 2 R 8i ¼ 1; . . . ;N

The objective function (33) and the constraints (34) model the or-
dered weighted sum of the values

PM
k¼1sjkbjcjk for j ¼ 1; . . . ;M, as

shown in (29) (see Ogryczak and Tamir (2003) for further details).
The remaining constraints are the usual ones for capacitated loca-
tion problems.

3.2.1. Logistics provider point of view
To give the improved model for the logistic provider point of

view, CDOMP6LV , we first define the following variables:

sjk ¼ proportion of the demand of ak covered by the supplier j

for j; k ¼ 1; . . . ;M. Then, the formulation, denoted CDOMP6LV

� �
, is the

following:

min
XNM

i¼1

ðkNM�iþ1 � kNM�iÞ i � ti þ
XM

j¼1

XM

k¼1

djki

 !
ð35Þ

s:t: djki P ak sjk cjk � ti 8j; k ¼ 1; . . . ;M; i ¼ 1; . . . ;NM ð36Þ
XM

j¼1

sjk ¼ 1 8k ¼ 1; . . . ;M

XM

k¼1

sjk ak 6 bj yj 8j ¼ 1; . . . ;M

XM

j¼1

yj ¼ N

yj 2 f0;1g 8j ¼ 1; . . . ;M

sjk P 0 8j; k ¼ 1; . . . ;M

djki P 0 8j; k ¼ 1; . . . ;M; i ¼ 1; . . . ;NM

ti 2 R 8i ¼ 1; . . . ;NM

The objective function (35) and the constraints (36) model the or-
dered weighted sum of the values aksjkcjk for j; k ¼ 1; . . . ;M, as
shown in (29) (see Ogryczak and Tamir (2003) for further details).
The remaining constraints are the usual ones for capacitated loca-
tion problems.
4. Computational results

In this section we present computational results for the pro-
posed models to give an idea about the capabilities of the different
formulations. For the tests we randomly generated problem in-
stances of varying size. Here, we chose the following parameters:

� Number of clients: Depending on the model, the values for M
range from 6 to 70.

� Location of the clients: The coordinates of the clients are uni-
formly distributed in the square [0,10] � [0,10].

� Demand of clients: The demands are uniformly distributed in
the interval [10,20].

� Transportation cost: The costs are computed as cij ¼ ridði; jÞ
where ri is a uniform random variable in the interval [1,5] (mod-
eling the transportation cost rate) and dð�; �Þ is the Euclidean
distance.

� Number of suppliers: N is chosen proportional to the number of
clients: N ¼ dM=be, where b ¼ 4 for the general formulations
and b ¼ 5 for the alternative formulations introduced in Section
3. (b is the average number of clients per facility.)

� Capacity of suppliers: The capacities are uniformly distributed in

the interval 1:1
PM

i¼1
ai

N ;1:3
PM

i¼1
ai

N

� �
.

� Modeling vector k: We consider five different types of vectors
L1(Median): k corresponding to the median problem, i.e.,

k ¼ ð1; . . . ;1Þ.
L2 (Center): k corresponding to the center problem, i.e.,

k ¼ ð0; . . . ;0;1Þ.
L3 (kCentrum): k corresponding to the k-centrum model, i.e.,

k ¼ ð0; . . . ;0;1; . . .k ;1Þ where k ¼ d0:4Me.
L4 (TrimmedMean): k corresponding to the ðk1; k2Þ-trimmed mean

problem, i.e., k ¼ ð0; . . .k1 ;0;1; . . . ;1;0; . . .k2 ;0Þ
where k1 ¼ k2 ¼ d0:2Me.

L5 (^-shaped): k corresponding to the ^-shaped problem
with values ð0;2;4; . . . ;M � 3;M � 1;M � 2;
M � 4; . . . ;3;1Þ if M is odd, and ð0;2;
4; . . . ;M � 2;M � 1;M � 3; . . . ;3;1Þ otherwise.
For each number of clients M we randomly generated 10 in-
stances. We solved the instances using CPLEX 9.1 where we limit
the maximal running time to 2 hours. All tests were done on a
PC with an Intel Pentium 4 processor with 3.4 GHz and 2 GB
Ram. In what follows, we report the average and maximum run-
ning times in seconds for each model. For the client point of view,
we introduced three models: ðCDOMPCV Þ; CDOMP2

CV

� �
, and

CDOMP1
CV

� �
. However, as the second formulation is inferior to

the third (see Section 2.1.1), we present in Table 1 results just
for the first and third formulation. In the table, ‘M’ and ‘N’ denote
the number of clients and new facilities, respectively, and ‘Avg’
and ‘Max’ the average and, respectively, maximal running times
in seconds over all instances of a given size.

Considering the first formulation, ðCDOMPCVÞ, we observe that
the choice of the modeling vector has a great impact on the run-
ning times. Whereas the problems for the L1, L4, and L5 modeling
vector (Median, TrimmedMean, and ^-shaped) can be solved within
a couple of minutes, the other two k-vectors result in running
times of well over 1 hour already for 10 clients and three new facil-
ities. For the center (k-centrum) objective we could solve just 3 out
of 10 (2 out of 10) instances optimally within 2 hours for M ¼ 10.

Comparing the formulations ðCDOMPCV Þ and CDOMP1
CV

� �
, we

observe that although the number of variables and constraints in
the latter formulation is much smaller compared to former, the
computational tests prove the formulation ðCDOMPCV Þ to be more
efficient for all five modeling vectors. For CDOMP1

CV

� �
, already for



Table 2
Results for the supplier and logistics provider point of view (CDOMPSV and CDOMPLV ).

Median Center k-Centrum Trimmed mean ^-Shaped

M N Avg Max Avg Max Avg Max Avg Max Avg Max

Supplier 16 4 0.7 1.6 3.8 10.1 3.8 13.1 1.2 1.5 1.2 2.0
18 5 2.7 3.6 66.4 150.1 66.0 147.2 6.2 16.5 8.8 12.1
20 5 3.5 5.7 146.5 501.7 135.4 394.9 9.5 18.9 12.1 18.2
22 6 11.5 30.7 1614.4 3512.6 1844.6 3594.6 120.8 307.7 94.3 139.7
24 6 14.2 44.6 3154.9 7003.8 3118.8 7057.0 164.0 846.3 139.8 440.2
26 7 191.2 976.2 6335.2 7153.0 6367.0 7184.0 491.0 2166.4 785.2 2100.5

Log 6 2 2.1 4.1 7100.4 7128.5 7083.3 7152.4 1069.3 2305.7 3590.5 7185.0
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nine clients CPLEX often reached the 2 hour time limit without
finding the optimal solution (this happened for four instances for
the center and two instances for the k-centrum objective). There-
fore, we consider in the following only the formulation ðCDOMPCVÞ.

In Table 2, we give results for the supplier and logistics provider
point of view.

Again we observe that, as for the client point of view, the run-
ning times for the center and k-centrum problem are much higher
than for the other three problem types. (Note that for the supplier
point of view we could solve for M ¼ 26 just 6 out of 10 (7 out of
10) instances for the center (k-centrum) objective optimally within
2 hours; for the logistics provider point of view these numbers
increase to 9 and 8, respectively, out of 10.) If we now compare
the results for the client, supplier, and logistics provider models,
we see that the approaches are not just different from a modeling
point of view, but also from the computational side. The CDOMPLV

is by far the most difficult model. For the center and k-centrum
objective, already for the smallest problem size with six clients al-
most none of the instances could be solved to optimality (within 2
hours). In contrast to that, for the supplier point of view we can
solve instances to optimality that are more than twice as large
compared to CDOMPCV .

4.1. Improved formulations

In Section 3 we introduced alternative formulations for the
CDOMP for modeling vectors k that consist of non-decreasing
values. The following results show that these models are much
more efficient than the general ones, considerably increasing
the size of the instances which can be solved to optimality
(within 2 hours).

In Table 3 we give the results for the improved formulations for
all three different points of view. We observe that the size of the
problems we can solve to optimality for the client and logistics cost
model is 5–6 times larger than for the general model. The supplier
cost model however shows a completely different behavior. First,
Table 3
Running times for all three points of view for the improved formulations of the CDOMP.

View Median

M N Avg Max

Client 30 6 0.2 0.7
40 8 0.5 1.6
50 10 1.6 4.9
60 12 1.2 1.5

Supplier 20 4 8.5 9.5
25 5 83.7 111.0
30 6 510.4 635.9
35 7 4376.1 4968.1

Logistics 10 3 0.2 0.2
20 4 3.9 5.3
30 6 26.5 32.0
the tractable problem size increases only slightly. Moreover, for in-
stances with 40 clients, CPLEX failed to obtain a solution in all
cases due to insufficient memory (the branch and bound tree
was larger than 2 GB). And last, in contrast to previous observa-
tions, the median problem is on average more difficult than the
center and k-centrum problem.
5. Conclusions and outlook

The great importance of discrete location problems in strategic
supply chain planning has stipulated the need to develop new loca-
tion models that fit better to real situations. Taking advantage of a
family of flexible models in Location Theory introduced by Nickel
and Puerto (2005) and Boland et al. (2006), this paper provides
new formulations of capacitated discrete location problems within
this framework. These new formulations are beyond of simply aca-
demic extensions of classical location models since they allow to
incorporate some actual factors that have been neglected up-to-
date: the different points of view of the parties in the logistic
system.

This paper covers the above aspects by introducing new formu-
lations of capacitated discrete location problems. Although, we fo-
cus mainly on modeling issues, we also report computational tests
comparing the performance of the different formulations. These re-
sults aim to establish the limits, both in CPU-time and size, of the
exact resolution of the different models using standard MIP solv-
ers. Our preliminary analysis shows that ‘‘ad-hoc” methods are re-
quired to solve even small sized instances of these problems. Thus,
this paper provides a starting point for the development of exact
and heuristic solution methods for all the models that have been
introduced. The works by Domínguez-Marín et al. (2005) (heuris-
tic) and Marín et al. (2008) (exact) for the uncapacitated problem
can serve as a basis for these investigations.

This paper, for the sake of brevity, does not consider models
with setup costs, where a similar analysis of the different points
Center k-Centrum

Avg Max Avg Max

8.4 18.9 5.8 13.1
235.9 619.2 55.8 138.3
1364.4 4555.0 1217.5 3898.5
6294.0 7197.8 4987.8 7145.1

7.3 9.3 7.5 9.2
54.3 84.0 57.3 104.9
255.3 380.0 249.7 366.7
3153.8 5404.5 3207.1 5802.3

0.3 0.3 0.3 0.3
42.9 52.9 46.7 61.2
7140.4 7158.9 7148.7 7163.3
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of view of the logistic problem is possible. The interested reader is
referred to Kalcsics et al. (2009) for an extended analysis of this
type of models under the framework of the Capacitated Ordered
Median Location Problem. Also models with an integrated objec-
tive that considers two or more perspectives or a multi-criteria for-
mulation would be interesting to study.
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